Skip to content
Narrow screen resolution Wide screen resolution Auto adjust screen size Increase font size Decrease font size Default font size blue color orange color green color Sign In

Matematika IPB

Karya Ilmiah Alumni
Previous month Previous day Next day Next month
See by year See by month See by week See Today Search Jump to month
Sidang Tugas Akhir Rahmat Chairulloh
From Kamis, Juni 26 2014 -  09:00
To Kamis, Januari 01 1970 - 08:00
Every day
by  Alamat e-mail ini dilindungi dari spambot, anda harus memampukan JavaScript untuk melihatnya Hits : 1905

Sidang Tugas Akhir

Rahmat Chairulloh
g54100038

Dosen Pembimbing

Teduh Wulandari Mas'oed M.Si.
Teduh Wulandari Mas'oed M.Si.

Dosen Penguji Drs. Siswandi, M.Si.

Pelabelan Antimagic Total Pada Graf Petersen

Teori graf merupakan salah satu cabang matematika yang cukup penting untuk dipelajari dan dikembangkan. Teori graf diperkenalkan oleh seorang ahli matematika asal Swiss, Leonhard Euler pada tahun 1736 untuk mencari solusi permasalahan mungkin tidaknya melewati ketujuh jembatan di kota Königsberg (sekarang dikenal sebagai Kaliningrad, Rusia) dan kembali ke tempat asal semula tepat satu kali dengan cara memodelkan permasalahan tersebut ke dalam model matematika berupa bagan yang terdiri dari simpul dan garis. Model ini kemudian dikenal sebagai “Teori Graf”. Seiring berkembangya teori graf,berbagai jenis graf mulai bermunculan, salah satunya yang paling dikenal dan sangat populer adalah graf Petersen. Graf Petersen diambil dari nama Peter Christian Julius Petersen pada tahun 1898. Hinga saat ini, teori graf masih terus berkembang selaras dengan pemikiran-pemikiran para ahli yang mengembangkannya. Salah satu masalah yang cukup menarik dalam teori graf adalah pelabelan pada graf. Karya ilmiah ini membuktikan teorema-teorema untuk memperoleh (a, d)-edge-antimagic total labeling dan super (a, d)-edge-antimagic total labeling pada graf Petersen. Pada pelabelan didefinisikan jumlah label sisi (edge) dan label dua simpul (vertex) yang menempel pada sisi disebut sebagai bobot sisi (edge-weights). Jika graf memiliki bobot simpul atau bobot sisi yang sama untuk setiap sisi maka graf ini disebut graf dengan magic labeling.Jika graf memiliki bobot simpul atau bobot sisi yang berbeda untuk setiap sisi maka graf ini disebut graf dengan antimagic labeling. Jika semua sisi mempunyai bobot sisi yang berbeda dan himpunan bobot sisi dari semua sisi membentuk barisan aritmatika dengan suku awal a dan beda d maka pelabelan tersebut disebut (a, d)-edge-antimagic total labeling. Kemudian, (a, d)-edge-antimagic total labeling disebut super (a, d)-edge-antimagic total labeling jika f(V(G) = {1, 2, …, v} dan f(E(G)) = {v+1, v+2, …, v+e}. Terdapat dua pembuktian teorema yang dibahas dalam karya ilmiah ini. Teorema pertama membuktikan bahwa graf Petersen P(n, m) dengan n ≥ 3 bilangan bulat ganjil, untuk m = 1, memiliki ((5n+5)/2,2)-edge-antimagic total labeling. Teorema kedua membuktikan graf Petersen P(n, m) dengan n ≥ 3, 1 ≤ m ≤ n/2 , mempunyai sebuah super (4n+2,1)-edge-antimagic total labeling.

Back

JEvents v1.4.2   Copyright © 2006-2007

Random Quotes

Katakanlah kepada anak-anak bahwa masa bersekolah itu merupakan hari-hari yang paling menyenangkan, karena tidak perlu mencari-cari.

anonim